Saturday, November 3, 2007

  • How is broadband access different from the network I use at work?
  • Corporate and government networks are typically protected by many layers of security, ranging from network firewalls to encryption. In addition, they usually have support staff who maintain the security and availability of these network connections.

    Although your ISP is responsible for maintaining the services they provide to you, you probably won’t have dedicated staff on hand to manage and operate your home network. You are ultimately responsible for your own computers. As a result, it is up to you to take reasonable precautions to secure your computers from accidental or intentional misuse.

  • What is a protocol?
  • A protocol is a well-defined specification that allows computers to communicate across a network. In a way, protocols define the "grammar" that computers can use to "talk" to each other.

  • What is IP?
  • IP stands for "Internet Protocol". It can be thought of as the common language of computers on the Internet. There are a number of detailed descriptions of IP given elsewhere, so we won't cover it in detail in this document. However, it is important to know a few things about IP in order to understand how to secure your computer. Here we’ll cover IP addresses, static vs. dynamic addressing, NAT, and TCP and UDP Ports.

  • What is an IP address?
  • IP addresses are analogous to telephone numbers – when you want to call someone on the telephone, you must first know their telephone number. Similarly, when a computer on the Internet needs to send data to another computer, it must first know its IP address. IP addresses are typically shown as four numbers separated by decimal points, or “dots”. For example, 10.24.254.3 and 192.168.62.231 are IP addresses.

    If you need to make a telephone call but you only know the person’s name, you can look them up in the telephone directory (or call directory services) to get their telephone number. On the Internet, that directory is called the Domain Name System, or DNS for short. If you know the name of a server, say www.cert.org, and you type this into your web browser, your computer will then go ask its DNS server what the numeric IP address is that is associated with that name.

    Every computer on the Internet has an IP address associated with it that uniquely identifies it. However, that address may change over time, especially if the computer is

    • dialing into an Internet Service Provider (ISP)
    • connected behind a network firewall
    • connected to a broadband service using dynamic IP addressing.

  • What are static and dynamic addressing?
  • Static IP addressing occurs when an ISP permanently assigns one or more IP addresses for each user. These addresses do not change over time. However, if a static address is assigned but not in use, it is effectively wasted. Since ISPs have a limited number of addresses allocated to them, they sometimes need to make more efficient use of their addresses.

    Dynamic IP addressing allows the ISP to efficiently utilize their address space. Using dynamic IP addressing, the IP addresses of individual user computers may change over time. If a dynamic address is not in use, it can be automatically reassigned to another computer as needed.

  • What is NAT?
  • Network Address Translation (NAT) provides a way to hide the IP addresses of a private network from the Internet while still allowing computers on that network to access the Internet. NAT can be used in many different ways, but one method frequently used by home users is called "masquerading".

    Using NAT masquerading, one or more devices on a LAN can be made to appear as a single IP address to the outside Internet. This allows for multiple computers in a home network to use a single cable modem or DSL connection without requiring the ISP to provide more than one IP address to the user. Using this method, the ISP-assigned IP address can be either static or dynamic. Most network firewalls support NAT masquerading.

  • What are TCP and UDP Ports?
  • TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both protocols that use IP. Whereas IP allows two computers to talk to each other across the Internet, TCP and UDP allow individual applications (also known as "services") on those computers to talk to each other.

    In the same way that a telephone number or physical mail box might be associated with more than one person, a computer might have multiple applications (e.g. email, file services, web services) running on the same IP address. Ports allow a computer to differentiate services such as email data from web data. A port is simply a number associated with each application that uniquely identifies that service on that computer. Both TCP and UDP use ports to identify services. Some common port numbers are 80 for web (HTTP), 25 for email (SMTP), and 53 for Dmain Name System (DNS).

  • What is a firewall?
  • The Firewalls FAQ (http://www.faqs.org/faqs/firewalls-faq/) defines a firewall as "a system or group of systems that enforces an access control policy between two networks." In the context of home networks, a firewall typically takes one of two forms:

    • Software firewall - specialized software running on an individual computer, or
    • Network firewall - a dedicated device designed to protect one or more computers.

    Both types of firewall allow the user to define access policies for inbound connections to the computers they are protecting. Many also provide the ability to control what services (ports) the protected computers are able to access on the Internet (outbound access). Most firewalls intended for home use come with pre-configured security policies from which the user chooses, and some allow the user to customize these policies for their specific needs.

    More information on firewalls can be found in the Additional resources section of this document.

  • What does antivirus software do?
  • There are a variety of antivirus software packages that operate in many different ways, depending on how the vendor chose to implement their software. What they have in common, though, is that they all look for patterns in the files or memory of your computer that indicate the possible presence of a known virus. Antivirus packages know what to look for through the use of virus profiles (sometimes called "signatures") provided by the vendor.

    New viruses are discovered daily. The effectiveness of antivirus software is dependent on having the latest virus profiles installed on your computer so that it can look for recently discovered viruses. It is important to keep these profiles up to date.

    More information about viruses and antivirus software can be found on the CERT Computer Virus Resource page

  • Computer security risks to home users
    1. What is at risk?
    2. Information security is concerned with three main areas:

      • Confidentiality - information should be available only to those who rightfully have access to it
      • Integrity -- information should be modified only by those who are authorized to do so
      • Availability -- information should be accessible to those who need it when they need it

      These concepts apply to home Internet users just as much as they would to any corporate or government network. You probably wouldn't let a stranger look through your important documents. In the same way, you may want to keep the tasks you perform on your computer confidential, whether it's tracking your investments or sending email messages to family and friends. Also, you should have some assurance that the information you enter into your computer remains intact and is available when you need it.

      Some security risks arise from the possibility of intentional misuse of your computer by intruders via the Internet. Others are risks that you would face even if you weren't connected to the Internet (e.g. hard disk failures, theft, power outages). The bad news is that you probably cannot plan for every possible risk. The good news is that you can take some simple steps to reduce the chance that you'll be affected by the most common threats -- and some of those steps help with both the intentional and accidental risks you're likely to face.

      Before we get to what you can do to protect your computer or home network, let’s take a closer look at some of these risks.

    3. Intentional misuse of your computer
    4. The most common methods used by intruders to gain control of home computers are briefly described below. More detailed information is available by reviewing the URLs listed in the References section below.

      1. Trojan horse programs
      2. Back door and remote administration programs
      3. Denial of service
      4. Being an intermediary for another attack
      5. Unprotected Windows shares
      6. Mobile code (Java, JavaScript, and ActiveX)
      7. Cross-site scripting
      8. Email spoofing
      9. Email-borne viruses
      10. Hidden file extensions
      11. Chat clients
      12. Packet sniffing
      1. Trojan horse programs
      2. Trojan horse programs are a common way for intruders to trick you (sometimes referred to as "social engineering") into installing "back door" programs. These can allow intruders easy access to your computer without your knowledge, change your system configurations, or infect your computer with a computer virus. More information about Trojan horses can be found in the following document.

        http://www.cert.org/advisories/CA-1999-02.html
      3. Back door and remote administration programs
      4. On Windows computers, three tools commonly used by intruders to gain remote access to your computer are BackOrifice, Netbus, and SubSeven. These back door or remote administration programs, once installed, allow other people to access and control your computer.

      5. Denial of service
      6. Another form of attack is called a denial-of-service (DoS) attack. This type of attack causes your computer to crash or to become so busy processing data that you are unable to use it. In most cases, the latest patches will prevent the attack. The following documents describe denial-of-service attacks in greater detail.

        http://www.cert.org/advisories/CA-2000-01.html
        http://www.cert.org/archive/pdf/DoS_trends.pdf

        It is important to note that in addition to being the target of a DoS attack, it is possible for your computer to be used as a participant in a denial-of-service attack on another system.

      7. Being an intermediary for another attack
      8. Intruders will frequently use compromised computers as launching pads for attacking other systems. An example of this is how distributed denial-of-service (DDoS) tools are used. The intruders install an "agent" (frequently through a Trojan horse program) that runs on the compromised computer awaiting further instructions. Then, when a number of agents are running on different computers, a single "handler" can instruct all of them to launch a denial-of-service attack on another system. Thus, the end target of the attack is not your own computer, but someone else’s -- your computer is just a convenient tool in a larger attack.

      9. Unprotected Windows shares
      10. Unprotected Windows networking shares can be exploited by intruders in an automated way to place tools on large numbers of Windows-based computers attached to the Internet. Because site security on the Internet is interdependent, a compromised computer not only creates problems for the computer's owner, but it is also a threat to other sites on the Internet. The greater immediate risk to the Internet community is the potentially large number of computers attached to the Internet with unprotected Windows networking shares combined with distributed attack tools such as those described in

        http://www.cert.org/incident_notes/IN-2000-01.html

        Another threat includes malicious and destructive code, such as viruses or worms, which leverage unprotected Windows networking shares to propagate. One such example is the 911 worm described in

        http://www.cert.org/incident_notes/IN-2000-03.html

        There is great potential for the emergence of other intruder tools that leverage unprotected Windows networking shares on a widespread basis.

      11. Mobile code (Java/JavaScript/ActiveX)
      12. There have been reports of problems with "mobile code" (e.g. Java, JavaScript, and ActiveX). These are programming languages that let web developers write code that is executed by your web browser. Although the code is generally useful, it can be used by intruders to gather information (such as which web sites you visit) or to run malicious code on your computer. It is possible to disable Java, JavaScript, and ActiveX in your web browser. We recommend that you do so if you are browsing web sites that you are not familiar with or do not trust.

        Also be aware of the risks involved in the use of mobile code within email programs. Many email programs use the same code as web browsers to display HTML. Thus, vulnerabilities that affect Java, JavaScript, and ActiveX are often applicable to email as well as web pages.

        More information on malicious code is available in http://www.cert.org/tech_tips/malicious_code_FAQ.html

        More information on ActiveX security is available in http://www.cert.org/archive/pdf/activeX_report.pdf

      13. Cross-site scripting
      14. A malicious web developer may attach a script to something sent to a web site, such as a URL, an element in a form, or a database inquiry. Later, when the web site responds to you, the malicious script is transferred to your browser.

        You can potentially expose your web browser to malicious scripts by

        • following links in web pages, email messages, or newsgroup postings without knowing what they link to
        • using interactive forms on an untrustworthy site
        • viewing online discussion groups, forums, or other dynamically generated pages where users can post text containing HTML tags

        More information regarding the risks posed by malicious code in web links can be found in CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests.

      15. Email spoofing
      16. Email “spoofing” is when an email message appears to have originated from one source when it actually was sent from another source. Email spoofing is often an attempt to trick the user into making a damaging statement or releasing sensitive information (such as passwords).

        Spoofed email can range from harmless pranks to social engineering ploys. Examples of the latter include

        • email claiming to be from a system administrator requesting users to change their passwords to a specified string and threatening to suspend their account if they do not comply
        • email claiming to be from a person in authority requesting users to send them a copy of a password file or other sensitive information

        Note that while service providers may occasionally request that you change your password, they usually will not specify what you should change it to. Also, most legitimate service providers would never ask you to send them any password information via email. If you suspect that you may have received a spoofed email from someone with malicious intent, you should contact your service provider's support personnel immediately.

      17. Email borne viruses
      18. Viruses and other types of malicious code are often spread as attachments to email messages. Before opening any attachments, be sure you know the source of the attachment. It is not enough that the mail originated from an address you recognize. The Melissa virus (see References) spread precisely because it originated from a familiar address. Also, malicious code might be distributed in amusing or enticing programs.

        Many recent viruses use these social engineering techniques to spread. Examples include

        • W32/Sircam -- http://www.cert.org/advisories/CA-2001-22.html
        • W32/Goner -- http://www.cert.org/incident_notes/IN-2001-15.html

        Never run a program unless you know it to be authored by a person or company that you trust. Also, don't send programs of unknown origin to your friends or coworkers simply because they are amusing -- they might contain a Trojan horse program.

      19. Hidden file extensions
      20. Windows operating systems contain an option to "Hide file extensions for known file types". The option is enabled by default, but a user may choose to disable this option in order to have file extensions displayed by Windows. Multiple email-borne viruses are known to exploit hidden file extensions. The first major attack that took advantage of a hidden file extension was the VBS/LoveLetter worm which contained an email attachment named "LOVE-LETTER-FOR-YOU.TXT.vbs". Other malicious programs have since incorporated similar naming schemes. Examples include

        • Downloader (MySis.avi.exe or QuickFlick.mpg.exe)
        • VBS/Timofonica (TIMOFONICA.TXT.vbs)
        • VBS/CoolNote (COOL_NOTEPAD_DEMO.TXT.vbs)
        • VBS/OnTheFly (AnnaKournikova.jpg.vbs)

        The files attached to the email messages sent by these viruses may appear to be harmless text (.txt), MPEG (.mpg), AVI (.avi) or other file types when in fact the file is a malicious script or executable (.vbs or .exe, for example). For further information about these and other viruses, please visit the sites listed on our Computer Virus Resource page:

        http://www.cert.org/other_sources/viruses.html
      21. Chat clients
      22. Internet chat applications, such as instant messaging applications and Internet Relay Chat (IRC) networks, provide a mechanism for information to be transmitted bi-directionally between computers on the Internet. Chat clients provide groups of individuals with the means to exchange dialog, web URLs, and in many cases, files of any type.

        Because many chat clients allow for the exchange of executable code, they present risks similar to those of email clients. As with email clients, care should be taken to limit the chat client’s ability to execute downloaded files. As always, you should be wary of exchanging files with unknown parties.

      23. Packet sniffing
      24. A packet sniffer is a program that captures data from information packets as they travel over the network. That data may include user names, passwords, and proprietary information that travels over the network in clear text. With perhaps hundreds or thousands of passwords captured by the packet sniffer, intruders can launch widespread attacks on systems. Installing a packet sniffer does not necessarily require administrator-level access.

        Relative to DSL and traditional dial-up users, cable modem users have a higher risk of exposure to packet sniffers since entire neighborhoods of cable modem users are effectively part of the same LAN. A packet sniffer installed on any cable modem user's computer in a neighborhood may be able to capture data transmitted by any other cable modem in the same neighborhood.

    5. Accidents and other risks
    6. In addition to the risks associated with connecting your computer to the Internet, there are a number of risks that apply even if the computer has no network connections at all. Most of these risks are well-known, so we won’t go into much detail in this document, but it is important to note that the common practices associated with reducing these risks may also help reduce susceptibility to the network-based risks discussed above.

      1. Disk failure
      2. Recall that availability is one of the three key elements of information security. Although all stored data can become unavailable -- if the media it’s stored on is physically damaged, destroyed, or lost -- data stored on hard disks is at higher risk due to the mechanical nature of the device. Hard disk crashes are a common cause of data loss on personal computers. Regular system backups are the only effective remedy.

      3. Power failure and surges
      4. Power problems (surges, blackouts, and brown-outs) can cause physical damage to a computer, inducing a hard disk crash or otherwise harming the electronic components of the computer. Common mitigation methods include using surge suppressors and uninterruptible power supplies (UPS).

      5. Physical Theft
      6. Physical theft of a computer, of course, results in the loss of confidentiality and availability, and (assuming the computer is ever recovered) makes the integrity of the data stored on the disk suspect. Regular system backups (with the backups stored somewhere away from the computer) allow for recovery of the data, but backups alone cannot address confidentiality. Cryptographic tools are available that can encrypt data stored on a computer’s hard disk. The CERT/CC encourages the use of these tools if the computer contains sensitive data or is at high risk of theft (e.g. laptops or other portable computers).

    Home Network Security

    Computer security is the process of preventing and detecting unauthorized use of your computer. Prevention measures help you to stop unauthorized users (also known as "intruders") from accessing any part of your computer system. Detection helps you to determine whether or not someone attempted to break into your system, if they were successful, and what they may have done.

  • Why should I care about computer security?
  • We use computers for everything from banking and investing to shopping and communicating with others through email or chat programs. Although you may not consider your communications "top secret," you probably do not want strangers reading your email, using your computer to attack other systems, sending forged email from your computer, or examining personal information stored on your computer (such as financial statements).

  • Who would want to break into my computer at home?
  • Intruders (also referred to as hackers, attackers, or crackers) may not care about your identity. Often they want to gain control of your computer so they can use it to launch attacks on other computer systems.

    Having control of your computer gives them the ability to hide their true location as they launch attacks, often against high-profile computer systems such as government or financial systems. Even if you have a computer connected to the Internet only to play the latest games or to send email to friends and family, your computer may be a target.

    Intruders may be able to watch all your actions on the computer, or cause damage to your computer by reformatting your hard drive or changing your data.

  • How easy is it to break into my computer?
  • Unfortunately, intruders are always discovering new vulnerabilities (informally called "holes") to exploit in computer software. The complexity of software makes it increasingly difficult to thoroughly test the security of computer systems.

    When holes are discovered, computer vendors will usually develop patches to address the problem(s). However, it is up to you, the user, to obtain and install the patches, or correctly configure the software to operate more securely. Most of the incident reports of computer break-ins received at the CERT/CC could have been prevented if system administrators and users kept their computers up-to-date with patches and security fixes.

    Also, some software applications have default settings that allow other users to access your computer unless you change the settings to be more secure. Examples include chat programs that let outsiders execute commands on your computer or web browsers that could allow someone to place harmful programs on your computer that run when you click on them.

  • Technology
  • This section provides a basic introduction to the technologies that underlie the Internet. It was written with the novice end-user in mind and is not intended to be a comprehensive survey of all Internet-based technologies. Subsections provide a short overview of each topic. This section is a basic primer on the relevant technologies. For those who desire a deeper understanding of the concepts covered here, we include links to additional information.

    1. What does broadband mean?
    2. "Broadband" is the general term used to refer to high-speed network connections. In this context, Internet connections via cable modem and Digital Subscriber Line (DSL) are frequently referred to as broadband Internet connections. "Bandwidth" is the term used to describe the relative speed of a network connection -- for example, most current dial-up modems can support a bandwidth of 56 kbps (thousand bits per second). There is no set bandwidth threshold required for a connection to be referred to as "broadband", but it is typical for connections in excess of 1 Megabit per second (Mbps) to be so named.

    3. What is cable modem access?
    4. A cable modem allows a single computer (or network of computers) to connect to the Internet via the cable TV network. The cable modem usually has an Ethernet LAN (Local Area Network) connection to the computer, and is capable of speeds in excess of 5 Mbps.

      Typical speeds tend to be lower than the maximum, however, since cable providers turn entire neighborhoods into LANs which share the same bandwidth. Because of this "shared-medium" topology, cable modem users may experience somewhat slower network access during periods of peak demand, and may be more susceptible to risks such as packet sniffing and unprotected windows shares than users with other types of connectivity. (See the "Computer security risks to home users" section of this document.)

    5. What is DSL access?
    6. Digital Subscriber Line (DSL) Internet connectivity, unlike cable modem-based service, provides the user with dedicated bandwidth. However, the maximum bandwidth available to DSL users is usually lower than the maximum cable modem rate because of differences in their respective network technologies. Also, the "dedicated bandwidth" is only dedicated between your home and the DSL provider's central office -- the providers offer little or no guarantee of bandwidth all the way across the Internet.

      DSL access is not as susceptible to packet sniffing as cable modem access, but many of the other security risks we'll cover apply to both DSL and cable modem access. (See the "Computer security risks to home users" section of this document.)

    7. How are broadband services different from traditional dial-up services?
    8. Traditional dial-up Internet services are sometimes referred to as "dial-on-demand" services. That is, your computer only connects to the Internet when it has something to send, such as email or a request to load a web page. Once there is no more data to be sent, or after a certain amount of idle time, the computer disconnects the call. Also, in most cases each call connects to a pool of modems at the ISP, and since the modem IP addresses are dynamically assigned, your computer is usually assigned a different IP address on each call. As a result, it is more difficult (not impossible, just difficult) for an attacker to take advantage of vulnerable network services to take control of your computer.

      Broadband services are referred to as "always-on" services because there is no call setup when your computer has something to send. The computer is always on the network, ready to send or receive data through its network interface card (NIC). Since the connection is always up, your computer’s IP address will change less frequently (if at all), thus making it more of a fixed target for attack.

      What’s more, many broadband service providers use well-known IP addresses for home users. So while an attacker may not be able to single out your specific computer as belonging to you, they may at least be able to know that your service providers’ broadband customers are within a certain address range, thereby making your computer a more likely target than it might have been otherwise.

      The table below shows a brief comparison of traditional dial-up and broadband services.





    The Spy in Your Server Room

    How many times have you passed an unknown person in the hallway at work, held open a keycard-protected door for a stranger or let an office guest wander unaccompanied to the rest room?

    It may seem harmless enough, but the staff of TraceSecurity is banking on this type of human error to help them gain access to your personal information.

    TraceSecurity won't be opening up credit card accounts in your name, accessing your bank accounts or installing spyware on your computer any time soon, however. Companies hire TraceSecurity employees to test the security of their systems – operations that usually involve TraceSecurity personnel talking their way into offices in order to gain access to server rooms and sensitive customer information. PC Magazine was invited along to cover a recent TraceSecurity operation.

    TraceSecurity made its debut in 2003 with the merger of two other firms, Blaze Technologies and security tools vendor PatchPortal. While the company's management team has a background in technology, acting skills play into the success of a TraceSecurity outing just as much as technical expertise. TraceSecurity will typically impersonate pest control workers or fire inspectors to gain entry to a building, talk their way into being left alone and gain access to the building's server room, surveillance system and client information.

    Companies can hire TraceSecurity to simply enter their business and place stickers on equipment they could have controlled, remove the actual equipment from the building, or implant Trojan horses and other malware to control their systems and access data remotely.

    If TraceSecurity is hired to physically remove material from a building, employees will meet company executives in the parking lot immediately after the operation and turn over whatever was recovered, according to Jim Stickley, the company's chief technical officer and vice president of engineering. If they remotely access files, TraceSecurity will take screen shots so none of the company data is ever actually stored on TraceSecurity systems, he said.

    Casing the joint

    PC Magazine was permitted to accompany Stickley and his co-worker Matthew Britton during a recent test of a client, an East Coast financial institution. The company hired TraceSecurity to place stickers on and take photographs of systems that could have been compromised.

    Stickley and Britton suited up as pest control officials and successfully hit three of the company's six area branches over several hours.

    TraceSecurity laid the groundwork for the operation days before the actual experiment, Stickley said. TraceSecurity modified the company's domain and sent an office-wide e-mail that looked as though it came from a higher-up in the branch. It warned employees of an upcoming pest control visit, and requested that the pest control workers be escorted through the office to check for infestation.

    "People have become so reliant on e-mail" that it is easy to trick them electronically, Stickley said. Company policies for many regulated industries warn against scheduling certain things solely over e-mail, but people do it anyway, he said.

    Stickley advised companies to have an internal code word for e-mail transactions or scheduling purposes so employees know they are dealing with a legitimate person.

    If TraceSecurity does not receive any suspicious e-mail from the employees in response to the modified domain email, they will assume the coast is clear and plan for an in-person visit. The executive that hired the TraceSecurity team, meanwhile, is kept abreast of all activity throughout the operation via cell phone calls from the TraceSecurity team.

    The hit

    On the day of the operation, Stickley and Britton cased the offices to be tested to get a sense of their size. They then had a TraceSecurity employee call the first branch and remind a contact person that "pest control officials" would be coming in.

    After pulling over and quickly affixing magnetic pest control signage to their rental car, Stickley and Britton entered the first location around 10 a.m. As PC Magazine had not been properly schooled on the art of pest control scamming – nor permitted to accompany TraceSecurity on its mission – this reporter remained in the car and awaited a report.

    Britton was eventually escorted to an outside door that housed the branch's computer systems. The escort lingered momentarily but soon returned inside the building, leaving Britton with access to branch's entire network. He tagged the equipment with TraceSecurity stickers and photographed all the equipment.

    "We could have easily put a wireless controller on the network rack" and accessed the entire system remotely, Stickley said later.

    Meanwhile, Stickley had been left inside alone in a side room that housed the branch's surveillance and security systems. "I made an excuse about possible infestation to stay in that room while Matthew went outside. It would have been easy to disable the alarm system," Stickley said.

    The branch housed about half a dozen employees, but they were occupied with customers during the TraceSecurity visit. "The escort also kept getting phone calls so that made it easier to sneak away," Stickley said.

    Overall, the operation took about 20 minutes. Stickley and Britton returned to the car, notified the company executive of their findings and typed up a brief report of the operation. ("Otherwise things blur together," Stickley said.)

    TraceSecurity hit two more of the company's branches that day, with similar results. Employees at the second, larger branch asked for ID from Stickley and Britton – both use their real names during operations to avoid the hassle of creating fake IDs, Stickley said – and trailed them more persistently, but Stickley said he eventually managed to wander away and gain "full control of the server room."

    Cell phone pictures of the operation showed a server room littered with white stickers.

    TraceSecurity also left blank CD-ROMs in system computers as "we were here" markers. Had it been requested, TraceSecurity could have gone one step further and uploaded its software onto the financial institution's system with the discs. A signal would then be sent to TraceSecurity computers, which could access the system remotely.

    Stickley also encountered papers with client account information. "There was actually a stack of papers with account numbers on the floor, so I picked them up and handed them to an employee and asked, 'Are these important?'" he said.

    Employees at the final branch proved to be the hardest to crack, Stickley said. The executive who hired TraceSecurity actually worked in that office, so Britton called him and requested that he take lunch or sequester himself in a conference room so as not to disturb the operation.

    At issue was an employee who was reluctant to let Stickley or Britton from her sight. Eventually, however, Britton grabbed an existing mouse trap from the server room floor and pretended it contained the remains of a mouse. Britton correctly assumed the woman would be caught off guard by the rodent. She softened, and basically let both men have the lay of the land provided she didn't have to personally deal with any mice herself.

    Lessons learned

    TraceSecurity will typically return to the offices the following day – minus the pest control gear – to brief employees on how to avoid being duped in the future.

    Executives can occasionally be miffed that TraceSecurity successfully infiltrated their business, but the IT guy is usually "pretty pumped because he's been complaining for the past year" that security is lacking. "Now he has someone to validate his concerns," Stickley said.

    Bosses can tell their employees 100 times to escort guests at all times, but most do not actually do it. "Sometimes you have to get burned to make you really understand," Stickley said.

    TraceSecurity has approximately thirty engineers on the road nationwide at any given time, Stickley said. Smaller operations might require only one TraceSecurity employee, but fifty percent of the experiments are done in two-man teams. For larger, government jobs, TraceSecurity could dispatch teams of up to five people, he said.

    Stickley has "never been popped" during a job, though some of his colleagues have run into trouble. Usually when TraceSecurity officials are caught, however, it is due to inside information.

    A TraceSecurity employee once tried to impersonate an Occupational Safety and Health Administration (OSHA) official, but the husband of a woman working at the office happened to be an OSHA inspector so she called the police, Stickley said.

    Impersonating a fire inspector is the easiest way to access the far corners of any business because, by law, you can't deny them entry, according to Stickley.

    "They're running to get you coffee" when you're in the fire inspector uniform, Stickley joked. "They want to date you."

    While the fire inspector getup may command more respect – and access – using this tactic can be time consuming, Stickley said. It is against the law to impersonate a federal official, so TraceSecurity has to notify local police and fire officials before executing their operation.

    Government jobs are similarly stressful, he said. Increased security in recent years means TraceSecurity personnel are trying to get past "guys with machine guns."

    The only place TraceSecurity employees do not have free reign is in bank safes, Stickley said. "They rarely leave us alone in there," he said.

    This is not a major issue, however, because "the real money is in Trojaning computers," he said. "Even with a million dollars in the safe, money is nothing. But 20,000 Social Security numbers [collected from company computers]? You can keep ripping them off for years."

    Operating in such tense situations means TraceSecurity needs employees who can think on their feet. When hiring engineers, TraceSecurity never specifically advertises for people to conduct these site visits. Instead, they hire from the technology side and try to gauge during interviews whether or not a person is affable and engaging enough to talk their way into a client's office.

    If a candidate is a real "booger eater", you know they're not going to be able to handle the job, Stickley said.

    TraceSecurity shies away from hiring hackers. "They're very bad news," Stickley said. "What have they been hacking?"

    Approximately 85 percent of TraceSecurity's clients are financial institutions. They used to be exclusively in the financial industry, but increased security and regulatory requirements have prompted companies in the healthcare, insurance and government sectors to also seek out TraceSecurity's expertise, Stickley said.

    "ID theft has been around forever" but people are more aware of it now, Stickley said. "It's a good time to be in security."

    Friday, November 2, 2007

    Google Webmaster


    Our suite of webmaster tools provides you with a free and easy way to make your site more Google-friendly. They can show you Google’s view of your site, help you diagnose problems, and let you share info with us to help improve your site’s visibility.


    Getting Google’s view of your site, and diagnosing potential problemsThe first step to increasing your site’s visibility on Google is learning how our robots crawl and index your site.

    Crawl info: You can make sure we have access to your site, and see when Googlebot last visited. You can also view URLs that we’ve had trouble crawling and why we couldn't crawl them. This way, you can fix any problems preventing us from indexing all of your pages.

    Robots.txt file validation: See if we’re having trouble with your file, and test out changes to that file before you change it on your server.

    Website content: View top content from your site and see the words that other sites use to link to it.

    Seeing how your site performsA second step is learning what drives traffic to your site.
    Top queries: Find the top queries that drive traffic to your site and where your site is included in the top search results. This will let you learn how users are finding your site.
    Indexing information: See how your site is indexed and which of your pages are included in the index. If we find violations in your site, we’ll give you the opportunity to fix the problems and request reinclusion of your site.

    Sharing info with Google about your siteSince no one knows more about your site than you do, you can also share this info with Google and improve your crawlability.
    Submit a Sitemap file: Tell us all about your pages by submitting a Sitemap file; help us learn which pages are most important to you and how often those pages change.
    Specify your preferred domain: Tell us which URL to use when indexing your site; we’ll do our best to index the version you prefer.



    Monday, October 29, 2007

    Google Picasa



    Gunakan Picasa dari Google untuk menemukan dan melihat foto-foto di komputer Anda dalam sekejab.
    Perangkat lunak yang dapat diunduh dan gratis serta menjamin foto Anda selalu teratur.
    Picasa adalah perangkat lunak yang membantu Anda mencari, mengedit, dan mengirim foto di PC Anda dalam waktu sekejab. Anda bisa mulai dengan memakai Picasa untuk mengambil foto-foto yang tersimpan di kamera Anda. Setelah itu tiap kali program ini dibuka, secara otomatis Picasa akan memindai lokasi yang ditunjuk untuk mencari semua foto yang Anda miliki (bahkan yang sudah Anda lupakan!) lalu disortir ke album visual yang diatur berdasarkan tanggal dan dinamai berdasarkan nama map yang dapat Anda kenali. Anda bebas melakukan tarik-dan-seret untuk mengatur album Anda maupun membuat label untuk membuat grup baru.
    Pengeditan foto tingkat lanjut yang rumit akan menjadi enteng dengan menggunakan Picasa. Perbaikan dasar hanya butuh satu kali klik dan beragam efek foto mudah digunakan. Picasa juga mempermudah Anda dalam berbagi-pakai foto: bisa dipos-el, dicetak di rumah, dibuat CD Kado, bahkan bisa untuk diposkan ke blog Anda.*
    Saat ini tersedia dalam pilihan bahasa berikut: Belanda, Bulgaria, Catalan, Ceksa, China Modern, China Tradisional, Denmark, Estonia, Finlandia, Hongaria, Indonesia, Inggris (US), Inggris (UK), Islandia, Italia, Jepang, Jerman, Korea, Kroasia, Latvia, Lithuania, Norwegia, Perancis, Polandia, Portugis-Brazil, Rumania, Rusia, Serbia, Slowakia, Slowenia, Spanyol, Swedia, Tagalog, Thailand, Turki, Ukraina, Vietnam, dan Yunani.